Global Climate Change Digest: Main Page | Introduction | Archives | Calendar | Copy Policy | Abbreviations | Guide to Publishers

GCRIO Home ->arrow Library ->arrow Archives of the Global Climate Change Digest ->arrow August 1997 ->arrow PROFESSIONAL PUBLICATIONS...

U.S. Global Change Research Information Office logo and link to home

Last Updated:
February 28, 2007

GCRIO Program Overview



Our extensive collection of documents.


Get Acrobat Reader

Privacy Policy

Global Climate Change DigestArchives of the
Global Climate Change Digest

A Guide to Information on Greenhouse Gases and Ozone Depletion
Published July 1988 through June 1999



Item #d97aug13

"Maximum and Minimum Temperature Trends for the Globe," D.R. Easterling et al., Science, 277(5324), 364-367, July 18, 1997. (See Prof. Pubs./Gen. Interest & Policy, this Global Climate Change Digest issue--August 1997.)

Item #d97aug14

"A New Global Gridded Radiosonde Temperature Data Base and Recent Temperature Trends," D.E. Parker (Hadley Ctr., Meteor. Off., London Rd., Bracknell, Berkshire RG12 2SY, UK; e-mail:, M. Gordon et al., Geophys. Res. Lett., 24(12), 1499-1502, June 15, 1997.

A new analysis of radiosonde data has been generated, in which data since 1979 from the Australasian region have been corrected for instrument-related discontinuities with the help of comparisons with collocated satellite measurements. (In future work, adjustments will be applied world-wide and extended to earlier years.) Zonal-mean analyses of the modified data show significant cooling in the lower stratosphere. Warming dominates the troposphere, being greatest in the annual mean around 45° N and possibly in the data-sparse high latitudes of the Southern Hemisphere. Radiosonde data are crucial to the detection, attribution and analysis of climatic variations because they provide better vertical resolution and a longer record than satellite data.

Item #d97aug15

"Evidence for Long-Term Cooling of the Upper Atmosphere in Ionosonde Data," T. Ulich (Geophys. Observatory, Sodankylä, Finland), E. Turunen,Geophys. Res. Lett., 24(9), 1103-1106, May 1, 1997.

Climate models predict cooling of the upper atmosphere as a result of greenhouse gases, but evidence is difficult to find. This paper demonstrates a close to linear decrease in the altitude of the F2 layer of the ionosphere during the past 39 years (after removal of the effect of solar cycle variations), consistent with model predictions.

Item #d97aug16

"Recent Observations of a Spring-Summer Surface Warming over the Arctic Ocean," S. Martin (Sch. Oceanog., Box 357940, Univ. Washington, Seattle WA 98195; e-mail:, E. Munoz, R. Drucker,Geophys. Res. Lett., 24(10), 1259-1262, May 15, 1997.

Climate models run for increasing CO2 predict warming over the Arctic Ocean during fall and winter, but the only existing analysis of observed temperature shows cooling in those seasons. This study re-analyzed the temperature observations to avoid suspected measurement problems. The only significant temperature trend found is warming in late spring and summer.

Item #d97aug17

"Clouds, Precipitation and Temperature Change," A. Dai, A.D. Del Genio, I.Y. Fung, Nature, 386(6626), 665-666, Apr. 17, 1997. (See Prof. Pubs./Global Warming Detection, this Global Climate Change Digest issue--August 1997.)

Item #d97aug18

"Borehole Temperatures and a Baseline for 20th-Century Global Warming Estimates," R.N. Harris (Dept. Geol. & Geophys., Univ. Utah, Salt Lake City UT 84112; e-mail:, D.S. Chapman, Science, 275(5306), 1618-1621, Mar. 14, 1997.

Borehole temperature profiles, which contain a memory of surface temperature changes in previous centuries, can be combined with the meteorological archive of surface air temperatures to establish a 19th-century baseline tied to the current observational record. Demonstrates this approach using data from Utah, which yields a noise reduction in estimates of 20th-century warming, and a baseline temperature that is 0.6° C below the 1951 to 1970 mean temperature for the region.

Item #d97aug19

"Spurious Trends in Satellite MSU Temperatures from Merging Different Satellite Records," J.W. Hurrell, K.E. Trenberth, Nature, 386(6621), 164-167, Mar. 13, 1997. (See Prof. Pubs./Gen. Interest & Policy, Global Climate Change Digest, Apr. 1997.)

Item #d97aug20

"Twentieth-Century Sea Surface Temperature Trends," M.A. Cane, A.C. Clement et al., Science, 275(5302), 957-960, Feb. 14, 1997. (See Prof. Pubs./Gen. Interest & Policy, Global Climate Change Digest, Mar. 1997.)

Item #d97aug21

"Spatial and Temporal Variations of 300 hPa Temperatures in the Northern Hemisphere Between 1996 and 1993," G.-R. Weber (Gesamtverband des deutschen Steinkohlenbergbaus, Friedrichstr. 1, 4300 Essen 1, Ger.), Intl. J. Climatol., 17(2), 171-185, Feb. 1997.

Although trends in surface temperature and in tropospheric temperatures (measured by satellite) have received much attention, trends at specific levels of the troposphere have not. This study finds that the most significant warming during the period at 300 hPa occurred over the tropical Pacific Ocean, particularly during negative phases of the Southern Oscillation Index. Discusses the findings in terms of atmospheric dynamics.

Item #d97aug22

"Trend Detection in Regional-Mean Temperature Series: Maximum, Minimum, Mean, Diurnal Range, and SST," X. Zheng (NIWA, POB 14-901, Wellington, New Zealand; e-mail:,J. Clim., 10(2), 317-326, Feb. 1997.

Examines trends in annual series of air temperature and sea surface temperature for the New Zealand region using a proper statistical treatment, which is often overlooked in other studies of regional trends. Finds a warming trend in air temperature for 1896-1994 about twice the global average, and a decrease in diurnal temperature range of 0.10° C per decade for 1951-1990. Overall, results are consistent with IPCC predictions.

Item #d97aug23

"Elevation Dependency of the Surface Climate Change Signal: A Model Study," F. Giorgi (NCAR, POB 3000, Boulder CO 80307; e-mail:, J.W. Hurrell et al.,J. Clim., 10(2), 288-296, Feb. 1997.

Presents results from a present-day and a doubled CO2 experiment over the European Alpine region using a nested regional climate model. The simulated temperature change signal shows a substantial elevation dependency, consistent with some observed temperature trends in the region, suggesting that high elevation temperature changes could be used as an early detection tool for global warming.

Item #d97aug24

"Satellite versus Surface Estimates of Air Temperature Since 1979," J.W. Hurrell, K.E. Trenberth, J. Clim., 9(9), 2222-2232, Sep. 1996. (See Prof. Pubs./Of Gen. Interest, Global Climate Change Digest, Feb. 1997.)

Item #d97aug25

"The Spatial Response of the Climate System to Explosive Volcanic Eruptions," P.M. Kelly (Clim. Res. Unit., Univ. E. Anglia, Norwich NR4 7TJ, UK), P.D. Jones, J. Pengqun, Intl. J. Climatol., 16(5), 537-550, May 1996.

Identifies the spatial climate response to major historic eruptions in the surface air temperature and mean sea-level pressure records, and uses this information to assess the impact of the Pinatubo eruption on global temperature. The analysis also shows that the magnitude and duration of global cooling (about 0.2° C for 1-2 years) following a major eruption is not sufficient to obscure any signal due to greenhouse gases for any appreciable time, unless there is a substantial increase in the frequency of those events. (See New Scientist, p. 18, Aug. 10, 1996.)

  • Guide to Publishers
  • Index of Abbreviations

  • Hosted by U.S. Global Change Research Information Office. Copyright by Center for Environmental Information, Inc. For more information contact U.S. Global Change Research Information Office, Suite 250, 1717 Pennsylvania Ave, NW, Washington, DC 20006. Tel: +1 202 223 6262. Fax: +1 202 223 3065. Email: Web: Webmaster:
    U.S. Climate Change Technology Program Intranet Logo and link to Home